网站首页 > 技术教程 正文
hive数据压缩
在实际工作当中,hive当中处理的数据,一般都需要经过压缩,前期我们在学习hadoop的时候,已经配置过hadoop的压缩,我们这里的hive也是一样的可以使用压缩来节省我们的MR处理的网络带宽
1、MR支持的压缩编码
为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示
压缩性能的比较
http://google.github.io/snappy/
On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.
2、压缩配置参数
要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):
3、开启Map输出阶段压缩
开启map输出阶段压缩可以减少job中map和Reduce task间数据传输量。具体配置如下:
案例实操:
1)开启hive中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
2)开启mapreduce中map输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
3)设置mapreduce中map输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;
4)执行查询语句
select count(1) from score;
4 开启Reduce输出阶段压缩
当Hive将输出写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。
案例实操:
1)开启hive最终输出数据压缩功能
hive (default)>set hive.exec.compress.output=true;
2)开启mapreduce最终输出数据压缩
hive (default)>set mapreduce.output.fileoutputformat.compress=true;
3)设置mapreduce最终数据输出压缩方式
hive (default)> set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;
4)设置mapreduce最终数据输出压缩为块压缩
hive (default)>set mapreduce.output.fileoutputformat.compress.type=BLOCK;
5)测试一下输出结果是否是压缩文件
insert overwrite local directory '/export/servers/snappy' select * from score distribute by s_id sort by s_id desc;
hive的数据存储格式
Hive支持的存储数的格式主要有:TEXTFILE(行式存储) 、SEQUENCEFILE(行式存储)、ORC(列式存储)、PARQUET(列式存储)。
1. 列式存储和行式存储
上图左边为逻辑表,右边第一个为行式存储,第二个为列式存储。
行存储的特点: 查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。select *
列存储的特点: 因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。 select 某些字段效率更高
TEXTFILE和SEQUENCEFILE的存储格式都是基于行存储的;
ORC和PARQUET是基于列式存储的。
2 .TEXTFILE格式
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。
3. ORC格式
Orc (Optimized Row Columnar)是hive 0.11版里引入的新的存储格式。
可以看到每个Orc文件由1个或多个stripe组成,每个stripe250MB大小,这个Stripe实际相当于RowGroup概念,不过大小由4MB->250MB,这样能提升顺序读的吞吐率。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer:
一个orc文件可以分为若干个Stripe
一个stripe可以分为三个部分
indexData:某些列的索引数据
rowData :真正的数据存储
StripFooter:stripe的元数据信息
1)Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引只是记录某行的各字段在Row Data中的offset。
2)Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。
3)Stripe Footer:存的是各个stripe的元数据信息
每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。
4. PARQUET格式
Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发,2015年5月从Apache的孵化器里毕业成为Apache顶级项目。
Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。
通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式如下图所示。
上图展示了一个Parquet文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。
5. 主流文件存储格式对比实验
从存储文件的压缩比和查询速度两个角度对比。
存储文件的压缩比测试:
0)测试数据 参见log.data
1)TextFile
(1)创建表,存储数据格式为TEXTFILE
create table log_text ( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE ;
(2)向表中加载数据
load data local inpath '/export/servers/hivedatas/log.data' into table log_text ;
(3)查看表中数据大小,大小为18.1M
dfs -du -h /user/hive/warehouse/myhive.db/log_text;
18.1 M /user/hive/warehouse/log_text/log.data
2)ORC
(1)创建表,存储数据格式为ORC
create table log_orc( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS orc ;
(2)向表中加载数据
insert into table log_orc select * from log_text ;
(3)查看表中数据大小
dfs -du -h /user/hive/warehouse/myhive.db/log_orc;
2.8 M /user/hive/warehouse/log_orc/123456_0
3)Parquet
(1)创建表,存储数据格式为parquet
create table log_parquet( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS PARQUET ;
(2)向表中加载数据
insert into table log_parquet select * from log_text ;
(3)查看表中数据大小
dfs -du -h /user/hive/warehouse/myhive.db/log_parquet;
13.1 M /user/hive/warehouse/log_parquet/123456_0
存储文件的压缩比总结:
ORC > Parquet > textFile
存储文件的查询速度测试:
1)TextFile hive (default)> select count(*) from log_text; _c0 100000 Time taken: 21.54 seconds, Fetched: 1 row(s) 2)ORC hive (default)> select count(*) from log_orc; _c0 100000 Time taken: 20.867 seconds, Fetched: 1 row(s) 3)Parquet hive (default)> select count(*) from log_parquet; _c0 100000 Time taken: 22.922 seconds, Fetched: 1 row(s)
存储文件的查询速度总结:
ORC > TextFile > Parquet
存储和压缩结合
官网:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
ORC存储方式的压缩:
1)创建一个非压缩的的ORC存储方式
(1)建表语句
create table log_orc_none( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS orc tblproperties ("orc.compress"="NONE");
(2)插入数据
insert into table log_orc_none select * from log_text ;
(3)查看插入后数据
dfs -du -h /user/hive/warehouse/myhive.db/log_orc_none;
7.7 M /user/hive/warehouse/log_orc_none/123456_0
2)创建一个SNAPPY压缩的ORC存储方式
(1)建表语句
create table log_orc_snappy( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS orc tblproperties ("orc.compress"="SNAPPY");
(2)插入数据
insert into table log_orc_snappy select * from log_text ;
(3)查看插入后数据
dfs -du -h /user/hive/warehouse/myhive.db/log_orc_snappy ;
3.8 M /user/hive/warehouse/log_orc_snappy/123456_0
3)上一节中默认创建的ORC存储方式,导入数据后的大小为
2.8 M /user/hive/warehouse/log_orc/123456_0
比Snappy压缩的还小。原因是orc存储文件默认采用ZLIB压缩。比snappy压缩的小。
4)存储方式和压缩总结:
在实际的项目开发当中,hive表的数据存储格式一般选择:orc或parquet。压缩方式一般选择snappy。
猜你喜欢
- 2024-10-26 0ops国际信息安全技术挑战赛-2019-Wallbreaker-Easy-WriteUp
- 2024-10-26 Apache2.4进阶:优化配置(apache 并发优化)
- 2024-10-26 PDF的这四个特点,作为职场人你必须知道
- 2024-10-26 Scapy:用Python编写自己的网络抓包工具
- 2024-10-26 Go 完整包列表(go打包配置文件)
- 2024-10-26 在Python中使用PDF:阅读和拆分(python读取pdf内容转word)
- 2024-10-26 Python3 环境搭建(python2环境搭建)
- 2024-10-26 大数据存储之ORC格式文件及Go实现
- 2024-10-26 技术研究拾遗:PDF文件(技术研究内容有哪些)
- 2024-10-26 你对hive的存储格式知多少?(hive 数据存储格式)
你 发表评论:
欢迎- 最近发表
-
- linux日志文件的管理、备份及日志服务器的搭建
- Linux下挂载windows的共享目录操作方法
- Linux系统中的备份文件命令(linux系统中的备份文件命令有哪些)
- 麒麟KYLINOS|通过不同方法设置用户访问文件及目录权限
- 「Linux笔记」系统目录结构(linux目录的结构及含义)
- linux中修改归属权chown命令和chgrp命令
- 工作日报 2021.10.27 Android-SEAndroid权限问题指南
- Windows和Linux环境下,修改Ollama的模型默认保存路径
- 如何强制用户在 Linux 上下次登录时更改密码?
- 如何删除Linux文件夹中除某些扩展名之外的所有文件?
- 标签列表
-
- 下划线是什么 (87)
- 精美网站 (58)
- qq登录界面 (90)
- nginx 命令 (82)
- nginx .http (73)
- nginx lua (70)
- nginx 重定向 (68)
- Nginx超时 (65)
- nginx 监控 (57)
- odbc (59)
- rar密码破解工具 (62)
- annotation (71)
- 红黑树 (57)
- 智力题 (62)
- php空间申请 (61)
- 按键精灵 注册码 (69)
- 软件测试报告 (59)
- ntcreatefile (64)
- 闪动文字 (56)
- guid (66)
- abap (63)
- mpeg 2 (65)
- column (63)
- dreamweaver教程 (57)
- excel行列转换 (56)
本文暂时没有评论,来添加一个吧(●'◡'●)