网站首页 > 技术教程 正文
点击上方"java全栈技术"关注,每天学习一个java知识点
————————————
————————————
二叉查找树(BST)具备什么特性呢?
1.左子树上所有结点的值均小于或等于它的根结点的值。
2.右子树上所有结点的值均大于或等于它的根结点的值。
3.左、右子树也分别为二叉排序树。
下图中这棵树,就是一颗典型的二叉查找树:
1.查看根节点9:
2.由于10 > 9,因此查看右孩子13:
3.由于10 < 13,因此查看左孩子11:
4.由于10 < 11,因此查看左孩子10,发现10正是要查找的节点:
假设初始的二叉查找树只有三个节点,根节点值为9,左孩子值为8,右孩子值为12:
接下来我们依次插入如下五个节点:7,6,5,4,3。依照二叉查找树的特性,结果会变成什么样呢?
1.节点是红色或黑色。
2.根节点是黑色。
3.每个叶子节点都是黑色的空节点(NIL节点)。
4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
下图中这棵树,就是一颗典型的红黑树:
什么情况下会破坏红黑树的规则,什么情况下不会破坏规则呢?我们举两个简单的栗子:
1.向原红黑树插入值为14的新节点:
由于父节点15是黑色节点,因此这种情况并不会破坏红黑树的规则,无需做任何调整。
2.向原红黑树插入值为21的新节点:
由于父节点22是红色节点,因此这种情况打破了红黑树的规则4(每个红色节点的两个子节点都是黑色),必须进行调整,使之重新符合红黑树的规则。
变色:
为了重新符合红黑树的规则,尝试把红色节点变为黑色,或者把黑色节点变为红色。
下图所表示的是红黑树的一部分,需要注意节点25并非根节点。因为节点21和节点22连续出现了红色,不符合规则4,所以把节点22从红色变成黑色:
但这样并不算完,因为凭空多出的黑色节点打破了规则5,所以发生连锁反应,需要继续把节点25从黑色变成红色:
此时仍然没有结束,因为节点25和节点27又形成了两个连续的红色节点,需要继续把节点27从红色变成黑色:
左旋转:
逆时针旋转红黑树的两个节点,使得父节点被自己的右孩子取代,而自己成为自己的左孩子。说起来很怪异,大家看下图:
图中,身为右孩子的Y取代了X的位置,而X变成了自己的左孩子。此为左旋转。
右旋转:
顺时针旋转红黑树的两个节点,使得父节点被自己的左孩子取代,而自己成为自己的右孩子。大家看下图:
图中,身为左孩子的Y取代了X的位置,而X变成了自己的右孩子。此为右旋转。
我们以刚才插入节点21的情况为例:
首先,我们需要做的是变色,把节点25及其下方的节点变色:
此时节点17和节点25是连续的两个红色节点,那么把节点17变成黑色节点?恐怕不合适。这样一来不但打破了规则4,而且根据规则2(根节点是黑色),也不可能把节点13变成红色节点。
变色已无法解决问题,我们把节点13看做X,把节点17看做Y,像刚才的示意图那样进行左旋转:
由于根节点必须是黑色节点,所以需要变色,变色结果如下:
这样就结束了吗?并没有。因为其中两条路径(17 -> 8 -> 6 -> NIL)的黑色节点个数是4,其他路径的黑色节点个数是3,不符合规则5。
这时候我们需要把节点13看做X,节点8看做Y,像刚才的示意图那样进行右旋转:
最后根据规则来进行变色:
如此一来,我们的红黑树变得重新符合规则。这一个例子的调整过程比较复杂,经历了如下步骤:
变色 -> 左旋转 -> 变色 -> 右旋转 -> 变色
几点说明:
1. 关于红黑树自平衡的调整,插入和删除节点的时候都涉及到很多种Case,由于篇幅原因无法展开来一一列举,有兴趣的朋友可以参考维基百科,里面讲的非常清晰。
2.漫画中红黑树调整过程的示例是一种比较复杂的情形,没太看明白的小伙伴也不必钻牛角尖,关键要懂得红黑树自平衡调整的主体思想。
文章摘自程序员小灰
猜你喜欢
- 2024-10-20 红黑树和AVL树之间的区别(红黑树和b树区别)
- 2024-10-20 数据结构怎么讲都听不会!红黑树自平衡?左旋或右旋?一头雾水
- 2024-10-20 数据结构与算法-基础(十三)红黑树(1)概述
- 2024-10-20 红黑树(R-B tree)原理图文详解(红黑树构造)
- 2024-10-20 数据结构:有了二叉查找树、平衡树为啥还需要红黑树?
- 2024-10-20 问:红黑树的删除真的很难吗?其实是你没找到好的解题思路
- 2024-10-20 linux学习第21节,为什么要设计“红黑树”这么奇怪的二叉搜索树
- 2024-10-20 硬核图解红黑树并手写实现(红黑树讲解)
- 2024-10-20 面试官-谈谈红黑树(红黑树面试最简洁的回答方式)
- 2024-10-20 17张图带你解析红黑树的原理!保证你能看懂!轻松应对面试
你 发表评论:
欢迎- 最近发表
-
- Win11学院:如何在Windows 11上使用WSL安装Ubuntu
- linux移植(Linux移植freemodbus)
- 独家解读:Win10预览版9879为何无法识别硬盘
- 基于Linux系统的本地Yum源搭建与配置(ISO方式、RPM方式)
- Docker镜像瘦身(docker 减小镜像大小)
- 在linux上安装ollama(linux安装locale)
- 渗透测试系统Kali推出Docker镜像(kali linux渗透测试技术详解pdf)
- Linux环境中部署Harbor私有镜像仓库
- linux之间传文件命令之Rsync傻瓜式教程
- 解决ollama在linux中安装或升级时,通过国内镜像缩短安装时长
- 标签列表
-
- 下划线是什么 (87)
- 精美网站 (58)
- qq登录界面 (90)
- nginx 命令 (82)
- nginx .http (73)
- nginx lua (70)
- nginx 重定向 (68)
- Nginx超时 (65)
- nginx 监控 (57)
- odbc (59)
- rar密码破解工具 (62)
- annotation (71)
- 红黑树 (57)
- 智力题 (62)
- php空间申请 (61)
- 按键精灵 注册码 (69)
- 软件测试报告 (59)
- ntcreatefile (64)
- 闪动文字 (56)
- guid (66)
- abap (63)
- mpeg 2 (65)
- column (63)
- dreamweaver教程 (57)
- excel行列转换 (56)
本文暂时没有评论,来添加一个吧(●'◡'●)